Solving the matrix exponential function for the Lie groups SU(3), SU(4) and Sp(2)

نویسندگان

چکیده

The well known analytical formula for $SU(2)$ matrices $U = \exp(i \vec \tau \!\cdot\! \varphi\,) \cos|\vec \varphi\,| + i\vec \hat\varphi \, \sin|\vec \varphi\,|$\\ is extended to the $SU(3)$ group with eight real parameters. resulting involves sum over three roots of a cubic equation, corresponding so-called irreducible case, where one has employ trisection an angle. When going special unitary $SU(4)$ 15 prameters, four quartic equation. associated resolvent equation positive belongs again case. Furthermore, by imposing pertinent condition on can also treat symplectic $Sp(2)$ ten Since there occur as two pairs opposite sign, this simplifies considerably. An outlook situation formulas $SU(5)$, $SU(6)$ and $Sp(3)$ given.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

the search for the self in becketts theatre: waiting for godot and endgame

this thesis is based upon the works of samuel beckett. one of the greatest writers of contemporary literature. here, i have tried to focus on one of the main themes in becketts works: the search for the real "me" or the real self, which is not only a problem to be solved for beckett man but also for each of us. i have tried to show becketts techniques in approaching this unattainable goal, base...

15 صفحه اول

Lie Algebras and Lie Brackets of Lie Groups–matrix Groups

The goal of this paper is to study Lie groups, specifically matrix groups. We will begin by introducing two examples: GLn(R) and SLn(R). Then in each section we will prove basic results about our two examples and then generalize these results to general matrix groups.

متن کامل

The surjectivity question for the exponential function of real Lie groups : A status report

The present knowledge of the structure of the exponential function of a real Lie group is surveyed. The emphasis is on the image of the exponential function: Which powers of a group element are contained in it, when is it dense, when does it fill the group? Some so far unobserved errors in the literature are pointed out, results are described, and some conjectures are formulated. Mathematics Su...

متن کامل

The Exponential Map and Differential Equations on Real Lie Groups

Let G be a connected Lie group with Lie algebra g , expG : g −→ G the exponential map and E(G) its range. E(G) will denote the set of all n -fold products of elements of E(G). G is called exponential if E(G) = E(G) = G . Since most real (or complex) connected Lie groups are not exponential, it is of interest to know that the weaker conclusion E(G) = G is always true (Theorem 5.6). This result w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The European Physical Journal A

سال: 2022

ISSN: ['1434-6001', '1434-601X']

DOI: https://doi.org/10.1140/epja/s10050-022-00816-5